New Raman Spectroscopic Evidence and Reassignment of the Spectra of Dimanganese and Dirhenium Decacarbonyls

By D. M. Adams,* M. A. Hooper, and A. Squire

(Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary New Raman spectroscopic evidence for solutions and oriented single crystals is presented from which a reassignment is made for the ν (CO) frequencies of the title compounds.

MANY differing assignments for the $\nu(CO)$ vibrations of $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$ have been suggested, although the frequencies of all the predicted modes have not yet been determined *experimentally*. Previous assignments for $Mn_2(CO)_{10}$ have been summarised by Bor.¹

Table 1 shows the distribution of modes for the molecular

TABLE 1

Correlation table for $M_{2}(CO)_{10}$

D_{4d}		C ₂ (site)	C_{2h} (2 molecules)
$2a_1$)	2a	$2A_{g} + 2A_{u}$
e_2	Framan-active	a + b	$A_{g} + B_{g} + A_{u} + B_{u}$
e ₃	Į	a + b	$A_g + B_g + A_u + B_u$
202	I.ractive	20	$2B_g + 2B_u$
e_1	J	a + b	$A_g + B_g + A_u + B_u$

point symmetry and the factor group symmetry; Table 2 shows the results and assignments for both compounds in solution; Table 3 shows the Raman spectroscopic results for an oriented single crystal of $\text{Re}_2(\text{CO})_{10}$.

We have established the positions of the four expected

Raman-active fundamentals for $Mn_2(CO)_{10}$ in solution. The band at 2116 cm⁻¹ is clearly polarised (a_1) , the other

TABLE 2

Raman lines (cm^{-1}) observed for petrol solutions of $M_{2}(CO)_{10}$

M = Mn	M=Re	Assignment
2116 2024 1997 1981	2128 2029 1993 (1980) ^a	$v_1, a_1 \\ v_{25}, e_2 \\ v_2, a_1 \\ v_{31}, e_3$

^B Estimated; see text.

three having depolarisation ratios 0.7—0.75. Measurements on oriented single crystals of $Mn_2(CO)_{10}$ enabled us to classify all of the Raman lines as A_g or B_g under factor group symmetry C_{2h} . These results can be correlated to molecular (D_{4d}) symmetry, allowing unequivocal assignments. The intensity of the 1990 cm⁻¹ line shows different dependence upon orientation from the other A_g lines but it always moves in conjunction with the 160 cm⁻¹ A_g line (due to Mn-Mn stretching): we therefore assign it to the axial carbonyl stretch, present in solution at 1997 cm⁻¹.

For $\text{Re}_2(\text{CO})_{10}$ the single-crystal results can be explained on the assumption that the a_1 (axial) and e_3 modes are almost coincident in solution. The A_g (axial) mode interacts with the A_g component of the e_3 mode, leading to the observed splitting pattern which differs from that of $Mn_2(CO)_{10}$.

TABLE 3					
Correlation of the $\nu(CO)$ frequencies of $\operatorname{Re}_2(CO)_{10}$					
D_4 I.r. (solution)	Raman (solution)	C2h Raman (crystal)			
2074, b ₂	2128, a_1 2029, e_2	2126, A_{g} 2074, B_{g} $\begin{cases} 2025, A_{g} \\ 2017, B_{g} \end{cases}$			
2013, e ₁ 1974, b ₂	1993, a ₁ (1980), e ₃	$\begin{cases} 1977^{a} A_{g} \\ 1990^{a} A_{g} \\ 1972 B_{g} \end{cases}$			

^a Almost certainly in resonance.

In the lower frequency region $(10-700 \text{ cm}^{-1})$ we have observed all five predicted modes of a_1 species for $\text{Re}_2(\text{CO})_{10}$,

¹ G. Bor, Chem. Comm., 1969, 441.
² J. Lewis, A. R. Manning, J. R. Miller, M. J. Ware, and F. Nyman, Nature, 1965, 207, 142.
³ I. J. Hyams, D. Jones, and E. R. Lippincott, J. Chem. Soc. (A), 1967, 1887.
⁴ C. O. Quicksall and T. G. Spiro, Inorg. Chem., 1969, 8, 2363.
⁵ D. M. Adams, M. A. Hooper, and A. Squire, J. Chem. Soc. (A), in the press; D. M. Adams and M. A. Hooper, to be published.
⁶ I. J. Hyams and E. R. Lippincott, Spectrochim. Acta., 1969, 25, A, 1845.
⁷ F. A. Cotton, A. Musco, and G. Yagupsky, Inorg. Chem., 1967, 6, 1357.

The band at 394 cm^{-1} of and all but one for $Mn_2(CO)_{10}$. $\operatorname{Re}_{2}(\operatorname{CO})_{10}$, previously reported as polarised in solution,^{2,3} is definitely depolarised and gives rise to two components 390 (B_g) and 394 (A_g) in the solid state; both observations require the 394 cm⁻¹ band to be of *e*-symmetry. We find many more bands below 150 cm⁻¹, for both compounds, than reported by Quicksall and Spiro.⁴ The full assignment will be published elsewhere.5

The presence of only one clearly polarised band in the $\nu(CO)$ region appears to be a general property of the M(CO)₅ unit. For Mn(CO)₅Br we find only one polarised band in solution (at 2139 cm⁻¹). The lowest-frequency v(CO) band, at 2007 cm^{-1} , has a high depolarisation ratio and cannot be identified as definitely polarised. This is contrary to the report of Hyams and Lippincott⁶ for Mn(CO)₅Br, but consistent with that of Cotton et al.⁷ for Mn(CO)₅CF₃.

We thank the S.R.C. for generous support.

(Received, June 2nd, 1970; Com. 852.)